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The plunge mode, mode 2, exists up to a speed of 186.5 ft/s. Toward
the end of this range, the frequency decreases sharply. It then meets
up with an additional oscillatory mode, mode 3. The frequency of
mode 3 decreases further with reducing speed, becoming zero at a
speed of 145.5 ft/s. Note that mode 3 has a correspondingcomplex
conjugate eigenvalue that is not a valid root because its frequency
does not match the assumed k value. As the frequency of mode 3
reaches zero, the complex conjugate eigenvalue becomes a valid
root. As the speed increases from 145.5 ft/s, one real root, mode 4,
becomes less stable and becomes unstable at the divergence speed,
216.5 ft/s. The other real root, mode 5, becomes more stable with
increasing speed.

Discussion

It can be seen from Fig. 1 that the method of successive approxi-
mation would not converge to the second root of the second eigen-
value. The plotofimaginary part of the second eigenvalue p, crosses
the line 2kV /¢ from below, implying that the slope of Im(p,) with
respect to 2kV /c is greater than 1. Note that a Newton-Raphson
solution method® would still converge.

The plot of the imaginary part of the second eigenvalue (Fig. 1)
retains its shape, but moves to the right with increasing speed and to
the left with decreasingspeed. This is consistent with the appearance
of the two real roots and one oscillatory root at 145.5 ft/s and the
disappearance of the two oscillatory roots at 186.5 ft/s. Note that
the shape of the plot is peculiar to Rodden, Harder, and Bellinger’s
form® of the p-k flutter equation.

From Fig. 2, it can be seen that a mode tracking procedure would
track the plunge mode up to the speed where the mode ceases to
exist or turns around and then converge to one of the real roots. This
is similar to the behavior reported in Ref. 4, except that the solution
convergedto the real root at speeds where the oscillatoryroot should
still exist.

Summary

Whenever the frequency of a structural mode goes to zero, one
would expect the complex root to be replaced by two real roots at
higher speeds. A mode tracking procedure would track only one of
the real roots, implying that the solution would be incomplete. The
divergence roots in the case of the two examples of Ref. 4 are the
logical continuationof structural modes after their frequencieshave
gone to zero. Calling them aerodynamic lag roots does not seem
justified.
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Unrestrained Aeroelastic Divergence
and the p-k Flutter Equation
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Nomenclature
= viscous structural damping matrix
airfoil chord
structural damping coefficient, also 2Re(p)c/[fn (2) V]
stiffness matrix
reduced frequency, wc/2V
inertia matrix
airfoil mass per unit span
differential operator, d /d¢
matrix of generalized aerodynamic forces, a function
of Mach number and pc/2V
= imaginary part of Q
real part of Q
vector of degrees of freedom
true airspeed
airfoil mass ratio m /[ p(c/2)?]
air density
= angular frequency, Im(p)
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Introduction

N Ref. 1 the aeroelastic divergence of two unrestrained airfoil-

body systems was investigated using the British (p-k) flutter
method. It was concluded that the systems divergedin an oscillatory
fashion rather than quasi statically as is the case with restrained
systems. It was also found that the divergence speeds as determined
from the flutter analysis were slightly differentfrom those obtained
by quasi-static unrestrained divergence analysis 2

In the present study, the second example of Ref. 1 was analyzed
using four forms of the p-k flutterequation,namely, Hassig’s form,?
Hassig’s form with the rigid plunge displacementdegree of freedom
eliminated, Rodden, Harder, and Bellinger’s form,* and the exact
equationof motion. These results show the link between quasi-static
unrestraineddivergenceanalysisand the dynamic stability methods.

Solutions

The characteristics of the two examples of Ref. 1 are the same
except for the center of gravity location: In example 1 it is at 37%
chord and in example 2 it is at 45% chord. The chord is 6 ft, the
elastic axis is at 40% chord, the radius of gyration about the elastic
axisis25% of the chord, and the mass ratio  =20.0. The uncoupled
bendingandtorsionfrequenciesare 10.0and 25.0rad/s, respectively,
with equal structural damping coefficients g = 0.03 in both modes.
The airfoil plunge spring is attached to a body with only a plunge
degree of freedom and mass equal to the airfoil mass.

Incompressible flow was assumed, and Jones’s approximation’
to the Theodorsen circulation function was used in the calculation
of the aerodynamic coefficients. A root search technique® was used
rather than the traditional mode tracking method of solution. The
damping values were all normalizedas defined in Ref. 7 fornonoscil-
latory roots. This was necessary to show smooth transitions from
complex to real roots.

The equation of motion of the system is

[Mp* + Bp + K — $pV2Q(pc/2V)]{u} =0 1)

For most practical problems, the solution of Eq. (1) is a formidable
task, mainly because of the dependence of the generalized forces

Received 22 May 2000; revision received 27 November 2000; accepted
for publication 30 November 2000. Copyright © 2001 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved.

*Engineer, Defence Aeronautics Programme, P.O. Box 395.

Scientist, Defence Aeronautics Programme, P.O. Box 395.



J. AIRCRAFT, VOL. 38,NO. 3:

on p. The generalized forces are usually only computed for har-
monic motion, that is, Re(p) =0. However, if Q(pc/2V) is avail-
able as an analytical function for complex p, Eq. (1) can be solved
with reasonable effort.

In Hassig’s form of the flutter equation,? it is assumed that the
aerodynamic coefficients for harmonic motion is also valid for
slowly growing or decaying oscillatory motion leading to the equat-
ion of motion

[Mp> +Bp + K — 1pV2Q(ik)J{u} = 0 0))

Rodden, Harder, and Bellinger* divided the matrix of generalized
aerodynamic forces into an aerodynamic stiffness matrix and an
aerodynamic damping matrix, leading to the equation of motion

[Mp* + (B = Lpcv0! [k)p + (K = Lov20R) ) =0 (3)

The equations of motion are written in state-space form with order
six and solved using a standard eigenvalue routine. The solution
of Hassig’s form of the flutter equation® is shown in Fig. 1 and
consists of the elastic pitch and plunge modes (modes 1 and 2), the
rigid plunge mode (mode 3), as well as the real roots associated with
divergence(modes 4 and 5). The pitch mode fluttersat 158.4 ft/s, and
therigidplungemode fluttersat215.0ft/s, whereas the elastic plunge
mode remains stable. The divergence speed of 200.4 ft/s is exactly
the speed predictedby quasi-staticunrestraineddivergenceanalysis.
The rigid plunge displacement degree of freedom can be elimi-
nated from the equations of motion by defining aerodynamic coeffi-
cients relating lift and moment to plunge velocity rather than plunge
displacement. The order of the problem is reduced to five, and the
solutionis shown in Fig. 2. The rigid plunge mode (mode 3) is now
stable and nonoscillatory. An oscillatory root (mode 4) bifurcates
fromtherigid plunge mode at 148 ft/s, flutters at215.0ft/s, and joins
oneof thedivergenceroots at 260 ft/s. The divergenceroots (modes 5
and 6) appear at 237 ft/s with a positive divergencerate g =0.86.
The solution of Rodden, Harder, and Bellinger’s form of the flut-
ter equation* is shown in Fig. 3 and consists of the pitch mode
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Fig. 1 Solution of Hassig’s form? of the flutter equation with order six.
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Fig. 4 Unstable roots of the exact equation of motion.

(mode 1), the elastic plunge mode (mode 2), and the rigid plunge
mode (mode 3). The pitch mode flutters at 158.4 ft/s, and the elas-
tic plunge mode flutters at 215.0 ft/s. The frequency of the elastic
plunge mode goes to zero between 371 and 372 ft/s with a positive
divergence rate g =0.26. The mode then splits into two real roots,
one becoming more unstable and the other becoming less unstable.

The unstable roots of Eq. (1) are shown in Fig. 4. The oscil-
latory roots were found by a mode tracking procedure starting at
the flutter points. The real roots were found by a root search pro-
cedure with the aerodynamic matrix calculated for exponentially
diverging motion. The solution is qualitatively similar to the solu-
tionof Rodden, Harder, and Bellinger’s form of the flutterequation®;
however, the frequency of the plunge mode goes to zero between
309.3 and 309.4 ft/s and the initial divergence rate g =0.46.

It was verified that the divergence roots of Hassig’s form® with
order six (Fig. 1) and five (Fig. 2) migrate smoothly to the exact
result (Fig. 4) by substituting Q( fpc/2U) for Q(pc/2U) inEq. (1)
and letting f vary from O to 1. The only surprising result was that
the complete parabolic structure in Fig. 1 does not migrate, but first
divides along the velocity axis. It was also verified that the solution
of Eq. (1) with order six was identical to the solution with order five.

Discussion

In the solution of Hassig’s form® of the flutter equation with order
six the divergence roots appear independently of the other roots of
the system. In the solution of Hassig’s form with order five, the
divergenceroots are linked to the rigid plunge mode by a bifurcated
root. In both these cases the instabilities at 158.4 and 215.0 ft/s
would be regarded as flutter, whereas the origin of the real roots
would be regarded as the onset of divergence.

In the solutions of Rodden, Harder, and Bellinger’s form of the
flutter equation* as well as the exact equation of motion, the real
roots originate where the frequency of the elastic plunge mode goes
to zero. It is open to interpretation whether the onset of divergence
is where the root becomes unstable or where it becomes nonoscil-
latory. It is, however, not valid to compare the divergence speed
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predicted by the quasi-static unrestraineddivergence analysis to the
flutter point.

Summary

InRef. 1 the accuracy of the quasi-steady unrestraineddivergence
analysis was questioned. Hassig’s form® of the flutter equation with
order six, which ignores the effect of exponentially decaying or
growing motion on the aerodynamics,agrees exactly with the quasi-
static unrestrained divergence analysis. This suggests that the flaw
in quasi-staticunrestraineddivergence analysisis the assumption of
quasi-static aerodynamics.
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Simplified Treatment of Unsteady
Aerodynamics for Lifting Rotors
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Introduction

T is sometimes useful in computing blade airloads to have ap-

proximate means to account for the nonstationary flow effects
resulting from the complex time varying flowfields in which lifting
rotors operate. This Note suggests such an approximationand com-
pares the results with solutions obtained by more rigorous methods
for the following two cases: 1) a two-dimensional oscillating air-
foil with a shed wake remaining in the plane of the airfoil and 2) a
two-dimensionaloscillating airfoil including a returning shed wake
located below the airfoil.

Reference 1 has formed the basis of most nonstationaryflow aero-
dynamic analyses in which the wake may be assumed to remain in
the plane of the airfoil. Reference 2 demonstrated the importance
of considering the returning wake for rotors in vertical flight. It was
shown that the blade damping could be reducedto very low values at
integers of the ratio of blade frequency to the forcing frequency and
could approach zero under conditions of no inflow. Both of these
treatments are frequency based. It has been recognized for some
time that, for rotors, a direct time-dependenttreatment could be ad-
vantageous, as discussed in Ref. 3. This is particularly so in view
of the highly variable changes in load, both temporal and spatial,
associated with such a phenomenon as blade and vortex interac-
tion, a primary contributorto the higher harmonic blade loadings of
cruising flight.
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