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The plunge mode, mode 2, existsup to a speed of 186.5 ft/s. Toward
the end of this range, the frequencydecreases sharply. It then meets
up with an additional oscillatory mode, mode 3. The frequency of
mode 3 decreases further with reducing speed, becoming zero at a
speed of 145.5 ft/s. Note that mode 3 has a correspondingcomplex
conjugate eigenvalue that is not a valid root because its frequency
does not match the assumed k value. As the frequency of mode 3
reaches zero, the complex conjugate eigenvalue becomes a valid
root. As the speed increases from 145.5 ft/s, one real root, mode 4,
becomes less stable and becomes unstable at the divergence speed,
216.5 ft/s. The other real root, mode 5, becomes more stable with
increasing speed.

Discussion
It can be seen from Fig. 1 that the method of successiveapproxi-

mation would not converge to the second root of the second eigen-
value.The plotof imaginarypartof the secondeigenvalue p2 crosses
the line 2kV=c from below, implying that the slope of Im(p2 ) with
respect to 2kV=c is greater than 1. Note that a Newton–Raphson
solution method8 would still converge.

The plot of the imaginary part of the second eigenvalue (Fig. 1)
retains its shape, but moves to the rightwith increasingspeed and to
the left with decreasingspeed.This is consistentwith the appearance
of the two real roots and one oscillatory root at 145.5 ft/s and the
disappearance of the two oscillatory roots at 186.5 ft/s. Note that
the shape of the plot is peculiar to Rodden, Harder, and Bellinger’s
form6 of the p–k � utter equation.

From Fig. 2, it can be seen that a mode tracking procedurewould
track the plunge mode up to the speed where the mode ceases to
exist or turns around and then converge to one of the real roots. This
is similar to the behavior reported in Ref. 4, except that the solution
convergedto the real root at speedswhere the oscillatoryroot should
still exist.

Summary
Whenever the frequency of a structural mode goes to zero, one

would expect the complex root to be replaced by two real roots at
higher speeds. A mode tracking procedure would track only one of
the real roots, implying that the solution would be incomplete. The
divergence roots in the case of the two examples of Ref. 4 are the
logicalcontinuationof structuralmodes after their frequencieshave
gone to zero. Calling them aerodynamic lag roots does not seem
justi� ed.
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Nomenclature
B = viscous structural damping matrix
c = airfoil chord
g = structural damping coef� cient, also 2Re.p/c=[ .2/V ]
K = stiffness matrix
k = reduced frequency, !c=2V
M = inertia matrix
m = airfoil mass per unit span
p = differential operator, d=dt
Q = matrix of generalized aerodynamic forces, a function

of Mach number and pc=2V
Q I = imaginary part of Q
Q R = real part of Q
fug = vector of degrees of freedom
V = true airspeed
¹ = airfoil mass ratio m=[¼½.c=2/2]
½ = air density
! = angular frequency, Im.p/

Introduction

I N Ref. 1 the aeroelastic divergence of two unrestrained airfoil–
body systems was investigated using the British (p–k) � utter

method. It was concludedthat the systems divergedin an oscillatory
fashion rather than quasi statically as is the case with restrained
systems. It was also found that the divergence speeds as determined
from the � utter analysis were slightly different from those obtained
by quasi-static unrestraineddivergenceanalysis.2

In the present study, the second example of Ref. 1 was analyzed
using four forms of the p–k � utterequation,namely,Hassig’s form,3

Hassig’s form with the rigid plungedisplacementdegreeof freedom
eliminated, Rodden, Harder, and Bellinger’s form,4 and the exact
equationof motion.These results show the link betweenquasi-static
unrestraineddivergenceanalysisand the dynamicstabilitymethods.

Solutions
The characteristics of the two examples of Ref. 1 are the same

except for the center of gravity location: In example 1 it is at 37%
chord and in example 2 it is at 45% chord. The chord is 6 ft, the
elastic axis is at 40% chord, the radius of gyration about the elastic
axis is 25% of the chord,and the mass ratio ¹ D 20:0. The uncoupled
bendingand torsionfrequenciesare10.0and25.0rad/s, respectively,
with equal structural damping coef� cients g D 0:03 in both modes.
The airfoil plunge spring is attached to a body with only a plunge
degree of freedom and mass equal to the airfoil mass.

Incompressible � ow was assumed, and Jones’s approximation5

to the Theodorsen circulation function was used in the calculation
of the aerodynamiccoef� cients. A root search technique6 was used
rather than the traditional mode tracking method of solution. The
dampingvalueswere all normalizedasde� ned in Ref. 7 fornonoscil-
latory roots. This was necessary to show smooth transitions from
complex to real roots.

The equation of motion of the system is

Mp2 C Bp C K ¡ 1
2
½V 2 Q.pc=2V / fug D 0 (1)

For most practical problems, the solution of Eq. (1) is a formidable
task, mainly because of the dependence of the generalized forces
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on p. The generalized forces are usually only computed for har-
monic motion, that is, Re. p/ D 0. However, if Q.pc=2V / is avail-
able as an analytical function for complex p, Eq. (1) can be solved
with reasonable effort.

In Hassig’s form of the � utter equation,3 it is assumed that the
aerodynamic coef� cients for harmonic motion is also valid for
slowly growing or decayingoscillatorymotion leading to the equat-
ion of motion

Mp2 C Bp C K ¡ 1
2
½V 2 Q.ik/ fug D 0 (2)

Rodden, Harder, and Bellinger4 divided the matrix of generalized
aerodynamic forces into an aerodynamic stiffness matrix and an
aerodynamic damping matrix, leading to the equation of motion

Mp2 C B ¡ 1
4 ½cVQI k p C K ¡ 1

2 ½V 2 Q R fug D 0 (3)

The equations of motion are written in state-space form with order
six and solved using a standard eigenvalue routine. The solution
of Hassig’s form of the � utter equation3 is shown in Fig. 1 and
consists of the elastic pitch and plunge modes (modes 1 and 2), the
rigid plungemode (mode 3), as well as the real roots associatedwith
divergence(modes 4 and 5). The pitchmode � uttersat 158.4 ft/s, and
the rigidplungemode� uttersat 215.0ft/s,whereastheelasticplunge
mode remains stable. The divergence speed of 200.4 ft/s is exactly
the speedpredictedby quasi-staticunrestraineddivergenceanalysis.

The rigid plunge displacement degree of freedom can be elimi-
nated from the equationsof motion by de� ning aerodynamiccoef� -
cients relating lift and moment to plunge velocity rather than plunge
displacement. The order of the problem is reduced to � ve, and the
solution is shown in Fig. 2. The rigid plunge mode (mode 3) is now
stable and nonoscillatory. An oscillatory root (mode 4) bifurcates
from the rigid plungemode at 148 ft/s, � utters at 215.0 ft/s, and joins
oneof thedivergencerootsat 260ft/s.The divergenceroots (modes5
and 6) appear at 237 ft/s with a positive divergence rate g D 0:86.

The solution of Rodden, Harder, and Bellinger’s form of the � ut-
ter equation4 is shown in Fig. 3 and consists of the pitch mode

Fig. 1 Solution of Hassig’s form3 of the � utter equationwith order six.

Fig. 2 Solution of Hassig’s form3 of the � utter equation with order
� ve.

Fig. 3 Solution of Rodden, Harder, and Bellinger’s form4 of the � utter
equation.
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Fig. 4 Unstable roots of the exact equation of motion.

(mode 1), the elastic plunge mode (mode 2), and the rigid plunge
mode (mode 3). The pitch mode � utters at 158.4 ft/s, and the elas-
tic plunge mode � utters at 215.0 ft/s. The frequency of the elastic
plunge mode goes to zero between 371 and 372 ft/s with a positive
divergence rate g D 0:26. The mode then splits into two real roots,
one becoming more unstable and the other becoming less unstable.

The unstable roots of Eq. (1) are shown in Fig. 4. The oscil-
latory roots were found by a mode tracking procedure starting at
the � utter points. The real roots were found by a root search pro-
cedure with the aerodynamic matrix calculated for exponentially
diverging motion. The solution is qualitatively similar to the solu-
tionof Rodden,Harder, andBellinger’s formof the � utterequation4;
however, the frequency of the plunge mode goes to zero between
309.3 and 309.4 ft/s and the initial divergence rate g D 0:46.

It was veri� ed that the divergence roots of Hassig’s form3 with
order six (Fig. 1) and � ve (Fig. 2) migrate smoothly to the exact
result (Fig. 4) by substituting Q. f pc=2U / for Q.pc=2U / in Eq. (1)
and letting f vary from 0 to 1. The only surprising result was that
the complete parabolic structure in Fig. 1 does not migrate, but � rst
divides along the velocity axis. It was also veri� ed that the solution
of Eq. (1) with order six was identical to the solutionwith order � ve.

Discussion
In the solutionof Hassig’s form3 of the � utter equationwith order

six the divergence roots appear independentlyof the other roots of
the system. In the solution of Hassig’s form with order � ve, the
divergence roots are linked to the rigid plunge mode by a bifurcated
root. In both these cases the instabilities at 158.4 and 215.0 ft/s
would be regarded as � utter, whereas the origin of the real roots
would be regarded as the onset of divergence.

In the solutions of Rodden, Harder, and Bellinger’s form of the
� utter equation4 as well as the exact equation of motion, the real
roots originatewhere the frequencyof the elastic plunge mode goes
to zero. It is open to interpretation whether the onset of divergence
is where the root becomes unstable or where it becomes nonoscil-
latory. It is, however, not valid to compare the divergence speed

predictedby the quasi-staticunrestraineddivergenceanalysis to the
� utter point.

Summary
In Ref. 1 the accuracyof the quasi-steadyunrestraineddivergence

analysis was questioned.Hassig’s form3 of the � utter equation with
order six, which ignores the effect of exponentially decaying or
growing motionon the aerodynamics,agreesexactlywith the quasi-
static unrestrained divergence analysis. This suggests that the � aw
in quasi-staticunrestraineddivergenceanalysis is the assumptionof
quasi-static aerodynamics.
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Introduction

I T is sometimes useful in computing blade airloads to have ap-
proximate means to account for the nonstationary � ow effects

resulting from the complex time varying � ow� elds in which lifting
rotors operate. This Note suggests such an approximationand com-
pares the results with solutions obtained by more rigorous methods
for the following two cases: 1) a two-dimensional oscillating air-
foil with a shed wake remaining in the plane of the airfoil and 2) a
two-dimensionaloscillatingairfoil including a returning shed wake
located below the airfoil.

Reference1 has formed the basisof most nonstationary� ow aero-
dynamic analyses in which the wake may be assumed to remain in
the plane of the airfoil. Reference 2 demonstrated the importance
of considering the returning wake for rotors in vertical � ight. It was
shown that the bladedampingcouldbe reducedto very low valuesat
integers of the ratio of blade frequencyto the forcing frequencyand
could approach zero under conditions of no in� ow. Both of these
treatments are frequency based. It has been recognized for some
time that, for rotors, a direct time-dependenttreatment could be ad-
vantageous, as discussed in Ref. 3. This is particularly so in view
of the highly variable changes in load, both temporal and spatial,
associated with such a phenomenon as blade and vortex interac-
tion, a primary contributorto the higher harmonic blade loadingsof
cruising � ight.
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